Решение задачи о полноте системы булевых функций

Задача. Является ли полной система функций? $J = \{x \to \neg y, \neg x \land y\}$.

Решение. Будем использовать следующую теорему.

Теорема Поста. Для того чтобы некоторый набор функций K был полным, необходимо и достаточно, чтобы в него входили функции, не принадлежащие каждому из классов T_0 , T_1 , L, M, S.

Проверим, каким классам принадлежат (не принадлежат) заданные функции: $f_1 = x \to y$, $f_2 = x \land y$.

Составим таблицы истинности для каждой функции:

х	у	$\frac{-}{x}$	\overline{y}	f_1	f_2
0	0	1	1	1	0
0	1	1	0	1	1
1	0	0	1	1	0
1	1	0	0	0	0

Функции, сохраняющие 0: f_2 .

Функции, сохраняющие 1: нет.

Немонотонные функции: f_1 , f_2 . Пояснение:

$$(0,0) \prec (1,1), f_1(0,0) = 1 > 0 = f_1(1,1),$$

$$(0,1) < (1,1), f_2(0,1) = 1 > 0 = f_2(1,1)$$

Несамодвойственные функции: f_1 , f_2 . Пояснение: $f_1(0,1) = f_1(1,0) = 1$, $f_2(0,0) = f_2(1,1) = 0$ (на противоположных наборах принимают одинаковые значения).

Проверим линейность: функция $f_2 = \overline{x} \land y = (x \oplus 1) y = xy \oplus y$ нелинейна.

Получили таблицу Поста:

	f_1	f_2
T_0	-	+
T_1	-	-

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

L		-
M	-	-
S	-	-

Видно, что набор функций образует полную систему.