Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Решение задачи о построении кода Шеннона-Фэно

Пусть имеется 6 кодовых символов. С помощью алгоритма Хаффмана построить код Шеннона-Фэно для текстового сообщения STUDENT

6. Пусть имеется 6 кодовых символов: D, E, N, T, S, U с частотами появления (см. табл. 2.1):

D	E	N	T	S	\boldsymbol{U}
20	21	15	17	18	9

Таблица 2.1. Частоты появления кодовых символов.

С помощью алгоритма Хаффмена построить код Шеннона-Фэно для текстового сообщения ST UDENT (большему слову приписываем справа 1, а меньшему – 0).

Решение.

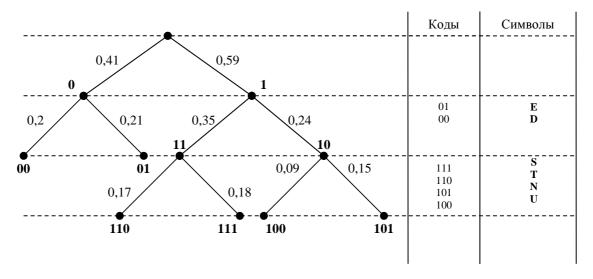
По условию, частоты появления кодовых символов заданы таблицей

D	Е	N	T	S	U
20	21	15	17	18	9

N=20+21+15+17+18+9=100.

Тогда вероятности появления кодоовых символов будут заданы таблицей:

D	Е	N	T	S	U
0,20	0,21	0,15	0,17	0,18	0,09

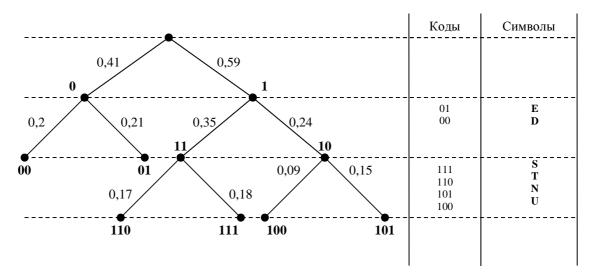

Воспользуемся алгоритмом Хаффмана.

Для того, чтобы закодировать сообщения по Хаффману, предварительно преобразуется таблица, задающая вероятности сообщений. Исходные данные записываются в столбец, две последние (наименьшие) вероятности в котором складываются, а полученная сумма становится новым элементом таблицы, занимающим соответствующее место в списке убывающих по величине вероятностей. Эта процедура продолжается до тех пор, пока в столбце не останутся всего два элемента.

Преобразуем таблицу.

Символы	P	P1	P2	Р3	P4
Е	0,21	0,24	0,35	0,41	0,59
D	0,2	0,21	0,24	0,35	0,42
S	0,18	0,2	0,21 ¬	0,24	
T	0,17	0,18 ¬	0,2		
N	0,15	0,17			
U	0,09				

Построим кодовое дерево и выпишем коды символов.



Для проверки построим коды Шеннона-Фэно.

При кодировании по Фэно все сообщения записываются в таблицу по степени убывания вероятности и разбиваются на две группы примерно (насколько это возможно) равной вероятности. Соответственно этой процедуре из корня кодового дерева исходят два ребра, которым в качестве весов присваиваются полученные вероятности. Двум образовавшимся вершинам приписывают кодовые символы 0 и 1. В результате многократного повторения процедуры разделения вероятностей и образования вершин приходим к ситуации, когда в качестве веса, приписанного ребру бинарного дерева, выступает вероятность одного из данных сообщений.

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Построим коды Шеннона-Фэно с использованием кодового дерева. Более вероятному слову будем приписывать справа 1, а менее вероятному – 0.

Мы видим, что коды Хаффмана и Шеннона-Фэно совпадают.

Код Шеннона-Фэно для текстового сообщения STUDENT: 1111101000001101110

Ответ: 1111101000001101110.