Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

Задача с решением по численным методам Тема: аппроксимация функции линейной зависимостью

Задание.

Функция задана таблицей.

i	0	1	2	3	4
Xi	1	2	3	4	5
y _i	2	0	1	-1	2

С помощью метода наименьших квадратов интерполировать функцию линейной зависимостью $P(x) = a_0 + a_1 x$ и оценить степень приближения.

Решение.

Посчитаем необходимые значения для метода наименьших квадратов.

i	Xi	y _i	y_i^2	x_i^2	$x_i y_i$
0	1	2	4	1	2
1	2	0	0	4	0
2	3	1	1	9	3
3	4	-1	1	16	-4
4	5	-2	4	25	-10
Сумма	15	0	10	55	-9

Теперь определим коэффициенты:
$$a_0 = \frac{\sum y_i \sum x_i^2 - \sum x_i \sum x_i y_i}{N \cdot \sum x_i^2 - (\sum x_i)^2} = \frac{0 \cdot 55 - 15 \cdot (-9)}{5 \cdot 55 - 15^2} = \frac{135}{50} = 2,7$$

$$a_1 = \frac{T \sum x_i y_i - \sum y_i \sum x_i}{N \cdot \sum x_i^2 - (\sum x_i)^2} = \frac{5 \cdot (-9) - 0 \cdot 15}{5 \cdot 55 - 15^2} = \frac{-45}{50} = -0,9$$

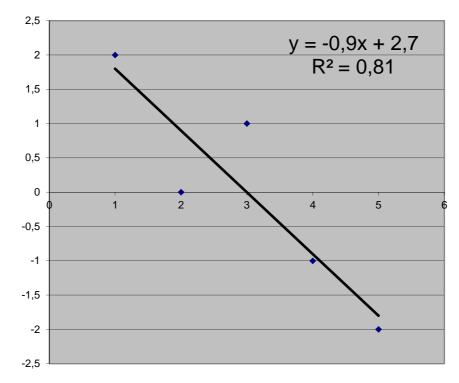
Таким образом, можно записать, что по методу наименьших квадратов P(x) = 2,7-0,9x

Для проверки адекватности модели посчитаем квадраты отклонений точного значения P(x) от значения по методу наименьших квадратов.

i	Xi	у точное	y=2,7-0,9x	$y_i - \overline{y_i}$	$(y_i - \overline{y_i})^2$
0	1	2	1,8	0,2	0,04
1	2	0	0,9	-0,9	0,81

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

2	3	1	0	1	1
3	4	-1	-0,9	-0,1	0,01
4	5	-2	-1,8	-0,2	0,04
Сумма	15	0	0	0	1,90


Для оценки степени приближения рассчитаем дисперсию результата:

$$S_a^2 = \frac{\sum_{i=0}^4 (y_i - \overline{y_i})^2}{n-2} = \frac{1,90}{3} = 0,6333$$
$$S_a = \sqrt{0,6333} = 0,7958$$

И величину достоверности аппроксимации

$$R^{2} = 1 - \frac{\sum_{i=0}^{4} (y_{i} - \overline{y_{i}})^{2}}{\sum_{i=0}^{4} y_{i}^{2} - \frac{(\sum_{i=0}^{4} y_{i})^{2}}{n}} = 1 - \frac{1,90}{10 - \frac{0^{2}}{5}} = 1 - \frac{1,90}{10} = 1 - 0,190 = 0,810$$

Изобразим точки и нашу прямую на графике:

Величина аппроксимации в 81% это вполне достаточная для некоторых случаев, хотя, конечно, не слишком большая точность.